حركة دوران جسم حول محور ثابت : التمارين

حركة جسم صلب حول محور ثابت : التمارين

التمرين تطبيقي: 1

. $\dot{\theta} = 10 \, \text{rad} \, / \, \text{s}$ هي دوران حول محور ثابت هي M من جسم صلب في دوران حول محور ثابت هي $\dot{\theta} = 10 \, \text{rad}$

أ _ أحسب التسارع الزاوي $\ddot{\theta}$ لهذه النقطة .

ب ـ ما طبيعة حركة النقطة M ؟

. $\theta_0 = 2 \text{rad}$ ج _ أكتب تعبير الأفصول الزاوي θ بدلالة الزمن t علما أن الأفصول الزاوي عند أصل التواريخ هو

و (s) حيث t من جسم صلب في دوران حول محور ثابت هو $\theta(t) = 10t^2 + 40t + 6$ حيث t بالثانية $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة $\theta(t) = 10t^2 + 40t + 6$ عبير الأفصول الزاوي لنقطة الزاوي الزاوي

. أ _ أوجد تعبير السرعة الزاوية بدلالة الزمن .

ب _ أُوجد تعبير التسارع الزَّاوي بدلالة الزمن .

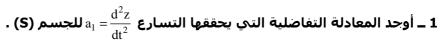
ج ـ ما طبيعة حركة النقطة N ؟

التمرين 2

ندير قرصا متجانسا ، كتلته m=10kg وشعاعه r=10cm ، حول محوره إلى أن تصير سرعة دورانه m=10kg دورة في الدقيقة ، تم نتركه .

نلاحظ أن القرص يتوقف عن الدوران بعد ثلاث دقائق تحث تأثير الاحتكاك الذي نقرن به مزدوجة ، نعتبر عزمها ثابتا .

1 _ أحسب التسارع الزاوي للقرص .


2 ـ استنتج عزم المزدوجة المقاومة للحركة وعدد الدورات التي ينجزها القرص قبل أن يتوقف .

التمرين 3

نعتبر أسطوانة متجانسة شعاعها m r=10cm وكتلتها m m=1kg يمكنها الدوران حول محور ثابت $m (\Delta)$ حيث يمر بمركزها ساق m T ثبت في طرفيه جسمين نقطيين كتلتهما $m m_1=m_2=0,5kg$ ساق m T ثبت في طرفيه جسمين نقطيين كتلتهما

، m' = 10kg من المحور (S) من المحور . (Δ) من المحور . (Δ) من المحور

بواسطة حبل ملفوف حولها نعتبره غير قابل الامتداد وكتلته مهملة. نترك المجموعة بدون سرعة بدئية ، علما أن الاحتكاكات مهملة وكذلك كتلة الساق .

المحور $_{
m Oz}$ موجه نحو الأسفل أحسب توتر الحبل أثناء الحركة

2 ـ عين السرعة الزاوية للأسطوانة عندما يقطع الجسم مسافة h = 5m

 $g = 10 \text{m} / \text{s}^2$ نعطي

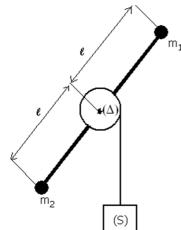
التمرين 4

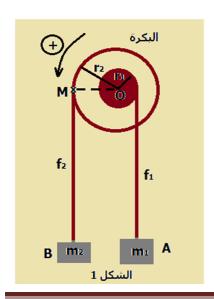
في المجموعة الميكانيكية الممثلة جانبه ، قيمة عزم قصور البكرة ذي المجريين : ${\rm J_{\Delta}}=1.7\times10^{-1}{\rm kg/m^2}$ ، الاحتكاكات مهملة والخيطين ${\rm f_1}$ و ${\rm f_2}$ غير ممدودين وكتلتاهما معملة .

كتلة الجسم A المعلق بالطرف الحر للخيط f_1 هي $m_1=3$ kg و كتلة الجسم المعلق $r_2=2$ r_1=40cm بالطرف الحر للخيط $m_2=2$ kg هي $m_2=2$ kg هي المجريين

1 ـ بين أن المجموعة تتحرك في المنحى المشار إليه في الشكل 1

2 ـ بإنجاز الدراسة التحريكية على المجموعة بين أن المعادلة التفاضلية التي يحققها


: التسارع الزاوي $\ddot{\theta} = \frac{d^2\theta}{dt^2}$ لحركة البكرة يكتب على الشكل التالي


$$\frac{d^2\theta}{dt^2} = \frac{r_1g(2m_2 - m_1)}{J_{\Delta} + r_1^2(4m_2 + m_1)}$$

B مينتج فيمتي التسارع الخطي a_1 للجسم a_2 و Δ

 T_2 و T_1 و T_2 و T_1 و و

(أنظر الشكل) معتبر النقطة M نقطة التماس بين الخيط f_2 والبكرة M نقطة 1 . أوجد مميزات متجهة السرعة 1 في هذه النقطة في لحظة 1

