
تمارين تطبيقية مع التصحيح حول قوانين نيوتن وتطبيقاتها قوانين نيوتن

التمرين 1

باعتمادك على المنحنى الممثل جانبه والذي يمثل تغيرات السرعة v بدلالة الزمن t لحركة طائرة قبل إقلاعها ، على مدرج أفقي . نعتبر أن حركة الطائرة مستقىمىة .

و t=1,0s : سرعة الطائرة في اللحظات التالية t=2,5s و t=2,0s

2 _ أكتب المعادلة الزمنية لحركة الطائرة

 \mathbf{c} استنتج السارع a . ما طبیعة الحركة \mathbf{c}

التمرين 2:

: على جول المحور Ox وفق المعادلة الزمنية التالية ($O, ec{i}, ec{j}$) على جول المحور Ox وفق المعادلة الزمنية التالية

$$x(t) = 16t - 6t^2$$

بحيث أن x بالمتر و t بالثانية .

. t=1,0s في اللحظة M في اللحظة t=1,0s .

2 _ في أي لحظة تمر النقطة المادية من النقطة 0 أصل معلم الفضاء ؟ .

. t=2s و t=0s و أحسب السرعة المتوسطة للنقطة المادية بين اللحظتين t=0s

 v_0 أوجد تعبير السرعة اللحظية للدقيقة في لحظة معينة واستنتج السرعة البدئية للنقطة المادية v_0

5 ـ حُدد اللَّحَظَّات t والمواضع \hat{x} التي ستتوقَّف فيها النقطة المادية . وفي أي لحظّة يكون التسارع منعدم ؟

6 ـ حدد المجالين الزمنيين الذين تكون حركة النقطة المادية متباطئة ومتسارعة .

التمرين 3 : ۚ إحْدَّاثِياُت ٱلنَّسِارَعُ فَي أَسَاس فريني

: تتحرك نقطة M في المعلم $(O,ec{i},ec{j})$ حيث المعادلتان الزمنيتان لهذه الحركة في النظام

$$\begin{cases} x(t) = t \\ y(t) = (t-1)^2 \end{cases}$$

. (Ox,Oy) في المستوى M في المستوى المسار لحركة النقطة M

2 ـ فِي أي لحظة تكون السرعة دنوية ؟

. M للنقطة a للنقطة - .

. v=3m/s أوجد إحداثيات النقطة M عندما تكون السرعة =4

ho وأوجد تعبيري التسارعين المماسي والمنظمي للنقطة M في كل لحظة واستنتج فيمة شعاع الانحناء t=1,0s في اللحظة واستنتج فيمة شعاع الانحناء و

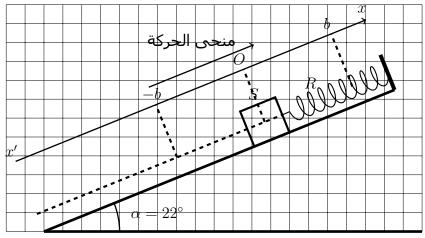
التَمرين 4 : قوانين نيوتن

F=40N على مسار مستقيمي ، يتحرك جسم صلب كتلته M=10kg تحث تأثير قوة $ec{F}$ ثابتة ، شدتها واتجاهها يكوَّن زاوية $heta=15^\circ$ مع الخط الأفقي .

. $v_0=6m/s$ وسرعته $x_0=5m$ وسرعته $x_0=5m$ وعند اللحظة t=0 وسرعته t=0 وسرعته وعتبر أن جميع الاحتكاكات مهملة .

. أوجد تعبيري السرعة v(t) و الموضع x(t) لمركز قصوره في كل لحظة خلال حركته

التمرين 5

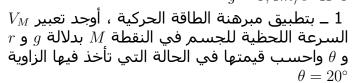

k=25N/m نعتبر جسما صلبا S كتلته m=0,2kg مثبت بالطرف الحر لنابض R لفاته غير متصلة وصلابته m=0,2kg نضذ هوائي مائل وكتلته مهملة بعد أن ثبت الطرف الآخر بحامل يمكن للجسم (S) الانزلاق بدون احتكاك فوق نضذ هوائي مائل

بزاوية $\alpha=22^\circ$ بالنسبة للمستوى الأفقي .فيطال النابض بالقيمة 5cm حيث أن المجموعة في حالة توازن و مركز قصور الجسم متطابق و النقطة O أصل المعلم xOy

نزيّح المجَّمُوعة (النَابض + الجسم S) عن موضع تُوازُّنها بالمسافة b=5cm نحو الأسفل ، حيث أن النابض غير مطال وغير مكبوس ، ونطلقها بدون سرعة بدئية فيمر من موضع توازنه في المنحى الموجب الموجه نحو أعلى المستوى المائل، عند لحظة t

. أوجد تعبير الإطالة Δl للنابض بدلالة m و g و lpha و k عندما يكون الجسم Δl في حالة توازن-1

 $g=10m/s^2$: أوجد تعبير التسارع والسرعة عندما يمر الجسم من موضع توازنه . نعطي 2

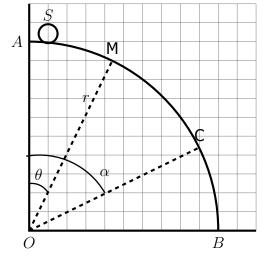


التمرين 6 :

نعتبر جسما صلبا S كتلته m=120g ذي أبعاد مهملة (نقطة مادية) ، ينطلق بدون سرعة بدئية من نقطة . m=120g من دائرة شعاعها r=50cm ومركزها O , بدن احتكاك . يوجد المسار في مستوى رأسي بالنسبة لسطح الأرض .

 $(\overrightarrow{\overrightarrow{OA}},\overrightarrow{\overrightarrow{OC}}=\alpha)$ يغادر الجسم S المسار في النقطة C بحيث أن

 $(\overrightarrow{OA},\overrightarrow{OM}=\theta)$ ونمعلم النقطة M التي يحتلها الجسم S في لحظة t_M بالأفصول الزاوي $q=9,8m/s^2$ نأخذ



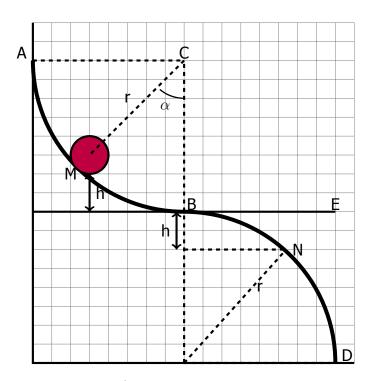
ي بتطبيق القانون الثاني لنيوتن في أساس فريني ، أوجد مميزات القوة \vec{R} ، تأثير المسار $\mathscr C$ على الجسم S

 \vec{a} ومثلها على الثبيانة اوجد مميزات التسارع \vec{a} ومثلها على الثبيانة باختيار سلم مناسب .

4 ـ عند وصول الجسم S النقطة C حيث يغادر المسار ، أحسب قيمة الزاوية α

C أوجد مميزات السرعة $ec{V_C}$ للجسم S في النقطة 5 أوجد مميزات السرعة أ

التمرين 7 ***:


تتكون سكة \widehat{ABD} لألعاب الأطفال من جزئين \widehat{ABD} و \widehat{BD} كل منهما عبارة عن ربع قوس من دائرة شعاعها r=1m توجد في مستوى رأسي على أساس أن المماس BE أفقي .

رنطلق عربة S كتلتها M=150g من النقطة I بسرعة بدئية $V_A=2m/s$ فتتحرك على طول السكة \widehat{AB} . نهمل جميع أنواع الاحتكاكات المطبقة على السكة .

1 ـ بتطبيق مبرهنة الطاقة الحركية ، أوجد تعبير السرعة V_M توجد على السرعة بدلالة r و g V_A و g و استنتج قيمتها في النقطة g

 \vec{R} أوجد تعبير شدة القوة \vec{R} المقرونة بتأثير السكة على العربة بدلالة r و g و g و g و استنتج قيمتها في النقطة g .

، $(\vec{CM},\vec{CB})=\alpha=45^\circ$ علما أن الزاوية $\vec{a_G}$ في النقطة M

نهمل BE نهمل الأفقي BE بدون سرعة بدئية ، من نقطة M توجد على ارتفاع h من المماس الأفقي BE . نهمل جميع أنواع الاحتكاكات المطبقة على السكة .

حدد الارتفاع h موضع النقطة M_0 الموجودة على السكة شريطة أن تغادر العربة ربع القوس الأسفل من الدائرة في النقطة $\alpha=45^\circ$ في النقطة N والتي توجد على تفس الارتفاع h من المماس BE من المماس